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J. Phys. A :  Math. Gen. 16 (1983) 293-301. Printed in Great Britain 

Potential r2 +Ar2/(l +gr2)  and the analytic continued 
fractions 

M Znojil 
Nuclear Physics Institute, Czechoslovak Academy of Sciences, 250 68 R e i  near Prague. 
Czechoslovakia 

Received 18 May 1982 

Abstract. We construct the exact wavefunctions and an analytic (continued-fractional) 
Green function for the one- and three-dimensional Schrodinger equation with the potential 

Vtr)  = h / r 2 + r 2 + A r 2 / ( 1  +gr2) ,  h >-i. 4 , A , g > O .  

In the numerical application of the formulae, the energy and norm of the bound state IL 
may be approximated by both their lower and upper estimates. 

1. Introduction 

The Schrodinger equation with the simplest non-polynomial interaction added to the 
harmonic-oscillator Hamiltonian Ho 

[Ho+Ar2/(1 +gr2)lrL(r)  =&m A>O,g>O, (1) 
finds applications in various branches of physics (quantum mechanics, field theory in 
zero dimensions, laser theory etc-see Biswas et a1 (1973) or Whitehead et  a1 (1982) 
for references). It has been thoroughly studied by perturbative or variational methods 
(Mitra 1978, Kaushal 1979, Bessis and Bessis 1980) and the resulting efficient 
algorithms for its numerical solution are available. In the present note, inspired by 
a puzzling existence of one exact solution of (1) which has an elementary form (Flessas 
1981, Varma 1981, Whitehead et a1 1982), we intend to complement these results 
and construct all the 4’s and E’s by purely analytic means. 

We shall not distinguish between the one- and three-dimensional interpretation 
of the ‘unperturbed’ problem 

Holn ) = En 1 n ), 
E , = &  +21+3,  

Ho = -d2/dr2 + [ ( I  + l ) / r 2  + r 2 ,  

n = 0, 1, . . , , 
and assume that we have either 1 = -1,0 and r E (-CO, a), or 1 = 0 , 1 , 2 , .  . . , and 
r E (0, CO), respectively. In the latter case, we may also admit non-integer 1’s when 
we denote the angular momenta by 2’= 0, 1 , .  . . and introduce an additional force 
h / r 2 ,  h > -2, such that I(I + 1) = 2’(2 + 1) + h (cf Killingbeck and Galicia 1980). 

We shall start by proceeding along the same lines as in Whitehead et a1 (1982) and 
represent the Schrodinger equation (1) as an infinite-matrix ‘diagonalisation’. Its 

0305-4470/83/020293 + 09$02.25 @ 1983 The Institute of Physics 293 



294 M Znojil 

consequent non-numerical treatment gives an exact form of I) and converts the 
Schrodinger eigenvalue problem into an analytic test of convergence of l\$ll ( Q  2). In 
8 3,  we transform the corresponding convergence criterion into a boundary-value 
condition for the nonlinear two-term recurrences and show that this represents an 
efficient numerical algorithm for the computation of the energies. Finally, we prove 
that the physical energies coincide exactly with the zeros of a simple analytic continued 
fraction (§  4). 

2. Schrodinger equation in the harmonic-oscillator basis 

In the first step of our considerations we multiply ( 1 )  by 1 + g r 2  from the left and 
employ the completeness of In)'s, 

This is an infinite and homogeneous system of the linear equations to be satisfied 
by the projections ( n  14). We may distinguish the following two cases. 

(i) The physical eigenvalue E =E'" does not coincide with any of the oscillator 
energies E,,.  Then, we may put ( k l $ )  = Z k / ( E k  - E ) ,  and our Schrodinger equation ( 1 )  
or ( 3 )  acquires the form 

where the infinite-dimensional matrix Q(a)  is symmetric and tridiagonal. 

replace the Nith row in (3) by mere definition, 
(ii) Whenever the physical eigenvalue E"' coincides with some E N , ,  we have to 

(Nil$) = ( b N , - l Z N , - l +  ~ N , z N , + I ) / F ,  ( 5 a )  

while the rest of (3)  becomes decoupled into a pair of finite- and infinite-dimensional 
problems, 

I \ 

\ZN,--l / 

bo 0 . . .  O \  

I \ 0 . . .  bn-l  a, 

and 

Z N , + l  

ZN,+2  

. . .  
= 0, 



Potential r 2  + hr2/(1 + g r 2 )  and analytic continued fractions 295 

respectively. Obviously, we have now the following two possibilities for constructing 
a non-trivial solution z : 

( 1 )  Provided that det Q(Ni  - 1) = 0, we may complement the non-trivial solution 
of ( 5 6 )  by the zero z 's  in (5c).  The resulting 4 is an elementary function, as noticed 
first by Flessas (1981) and described in detail by Whitehead et a1 (1982). 

(2) When det Q(N,  - 1) # 0, we must put z o  = . . . = z ~ , - ~  = 0. Then the structure 
of ( 5 c )  is equivalent to (4) and need not be considered separately in what follows. 

In the form (4), our problem is similar to the standard diagonalisation, but it must 
be treated with due care since its energy dependence is non-standard. Moreover, the 
compact formula 

gives formally the explicit solution 14) = C In)(nl4)  for each energy E and normalisa- 
tion (014). The physical requirement concerning $(r ) ' s ,  

may still be met by z ' s  possessing an infinite norm. Our approach to the solution of 
(4) will therefore be based on a direct verification of convergence (7) by means of the 
Raabe criterion (e.g. Korn and Korn 1968) 

3. Schrodinger equation as recurrences 

3.1. Auxiliary sequences 

To simplify the determinantal form (6) of the convergence criterion (8), we decompose 
algebraically the three-diagonal matrix Q(m) in (4) into the product of the three 
simpler matrices 

1 U 0  0 . * .  
1 u 1  0 . . . ] x  

1 0 . . .  1 dl 1 0 . . .  

L l f o  0 . . .  
0 l / f l  0 . . .  

(9) 

where uk = bkfk-1, dk = bk-1 fk, and f O ,  f l ,  . . . is an arbitrary sequence which satisfies 
the recurrences 

(10) 
2 

l / f k  =ak -bkfk- l ,  k = 0 ,  1 , .  . . . 
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Then equation (4) may also be decomposed, 

in terms off’s .  We may verify that (12) is equivalent to  (6) and independent of the 
initialisation of the auxiliary sequence f k .  Nevertheless, the particular sequence f Lo) 
denoted by the zero superscript and defined by the initialisation 

l/fP = 0 (13)  

gives by far the simplest form of z ’ s  

zk = (-l)kzobofiO’bl f ? ) .  . . bk-1 f k ” ’ ,  i 14) 

which is also especially suitable for an insertion into (8) .  

3.2. Determination of the eigencalues 

The k >> 1 approximate form of (10) for (Fk = gkfk, 

1 / v k  = 2 - ( P k  + I  + O ( l / k ) ,  (15) 

is an approximately k-independent mapping with a unique (semi-stable) point of 
accumulation. After a sufficient number of iterations, we obtain (Pk - 1 from any 
initialisation pN. This type of ‘convergence‘ is quite quick-e.g. from qJV = 0 we get 
( ~ ~ - ~ = i / ( i + I ) + O ( l / N ) f o r i = 1 , 2  , . . . .  

The resulting rough estimate of zk/zk+l= -l/bkfjp:l = O(I )  shows that the distinc- 
tion between the convergent and divergent ~ ~ 4 ~ ~ ’ s  has to  be attributed to the higher-order 
corrections. 

When we denote the first correction by & = gkfk - 1, we obtain the old recurrences 
(10) in the new k >> 1 form 

The mappings & + I - - *  A, or & + A k - 1  are still only weakly k-dependent for k >> 1. 
Their geometric interpretation is presented in figure 1 and shows that the sequence 
of &’S initialised by some AN has now the two distinct (weakly k-dependent) points 
of accumulation 

h k  -A;-’= - ( g k ) - ” * + O ( l / k ) ,  1 c k << N, (170) 

l k  - A y ’ =  +(gk)-”* + O ( l / k ) ,  k >>N. i17b) 
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Figure 1. Geometric interpretation of the mapping A k + ,  + A k ,  

In the light of equations (171, a set of all the possible sequences f k  interpreted as 
functions of k >> 1 has the form depicted in figure 2. These non-intersecting curves 
may be reinterpreted also as the same particular sequence (say, f;”) at the different 

Figure 2. The k >> 1 asymptotic behaviour of the different f k  



298 M Znojil 

energies E. For almost all E's,  we get therefore an asymptotic estimate (cf (13) and 
(176)) 

Z k / Z k - l  =-bk-lfp' = - ( l+ (gk) - "2+O( l /k ) )  (18) 

and an infinite norm of 4 (cf (8)). Vice versa, whenever l ld~ll< "0, the physical require- 
ment E = E"' may be given the form of the transcendental equation 

b k - l f j l ) )  = 1 - (gk)-' + C ( k ) / k ,  c ( k )  f 2(k/g)"2, k =No>>l ,  (19) 

reflecting the non-stability of the physical solution fz) )  at E =E'" .  

3.3. Numerical test 

The recurrences (10) complemented by the 'boundary conditions' (13) and (19) with 
the finite and growing No's represent a systematic sequence of approximations to the 
Schrodinger eigenvalue problem (1). The efficiency of this scheme has been verified 
numerically and a sample of the results is given in table 1. The three algorithms A l ,  
A2 and A3 were used, with the respective initialisations (13), (19) and (19), and with 
the respective choice of c(No)  = 0, c ( N o )  = 0 and c(No)  >>2(~ 'V~/g) ' '~  in equation (19). 
The 'exact' energies of Bessis and Bessis (1980) were reproduced, or, for A = g = 1, 
corrected in accordance with Mitra (1978). For small couplings, the convergence was 
found to be excellent-sometimes, even the N = 2 approximation gives fair results. 

From the practical point of view, the most important property of the pair of 
algorithms A2 and A3 is that they generate the pair of the lower and upper bounds 
for the energies-this follows from figure 1 and informs us directly about the precision 
of the approximate result. 

For the 'subcritical' No's, even the unstable algorithm A1 gives satisfactory approxi- 
mations. Of course, it must be used with great caution--e.g., the ground-state root 
of (19) disappears completely at No = 20 for A = g = 0.1. 

4. Analytic solution 

In the limit No-. m, the discrete eigenvalue problem (10) + (13) + (19) becomes 
equivalent to (1)-we may prove our final analytic result. 

Theorem. The physical energies E = E " '  coincide with the poles of an analytic con- 
tinued fraction fb"' defined by (10). 

Proof. By definition (Wall 1948) we have f LE '  = limN-,,fd , k = 0, 1, , . . , where f k v '  
is a particular auxiliary sequence fk initialised by the value l/fk?'  = 0. Such a sequence 
is singular (fcJ1 = 0, fi =CO, fkNJ1 = aN/bN,.  . .) but it may still be used to define 
z ' s  since all the indefinite products and sums of the singular terms in (12) (namely, 
flvh'llfk?) = - l / b k  and bhr-l f N  + l / b N - l  f?!l = aN-l/bN-l, respectively) are finite. 
The convergence of the continued fractions f;"' follows from (17a) and implies that 
equation (19) is satisfied. It may be reinterpreted as a 'coincidence' condition fko)  =fip"'  
valid for all k ' s  at E =E" ' .  From the same point of view, we may reinterpret equation 
(13) written in the form 

I V I  

I b, 1 2 

(NI 

1 /fk" = 0 (20) 
as the standard secular equation for E'"'s. 



Potential r 2  + hr2 / (1  + g r 2 )  and analytic continued fractions 299 

Table 1. Binding energies-convergence of the deviations d = (Ecomputed-Eexac,) X 10'. 

E,,,,, = 1.043 173 710" 5.181 094 790b 
No A2' A3 A2 A3 

2 -30804 +90 198 -4 531 +312 947 
3 -1 242 t 3  467 -61 +346 
4 -70 +194 -4 +12 
5 -2 +16 -0.4 +0.9 
6 +2 +3 -0.04 +0.07 
7 +2 +2 -0.008 +0.006 

E,,,,, = 1.000 841 100d 9.976 180 090' 
No A2 A3 No A2 A3 

200 -603 +lo9 50 -444 +308 
300 -111 +30 100 -2 -2 

E,,,,, = 1.043 173 710" 1.836 385 OOOg 
No Al' NO A I  

~~ 

3 -89 90 +965 
5 -0.011 110 -643 
6 -0.003 130 -713 
7 -0.010 150 -529 

12 -228 250 -60 
15 -39783 

E,,,,, = 1.232 372 050' 1.836 385 OOOg 
No A2 A3 NO A2 A3 

11 -31219 +8 177 300 -129612 +29 922 
12 -23202 -1 404 400 -38995 +7 348 
13 -18907 -6 552 500 -16158 +175 
20 -13466 -13 085 600 -8 941 -2 454 

a A = g = 0.1, ground state. 
A = g = 0.1, second excited state. 
Algorithms described in 0 3.3. 
A = 0.1, g = 100, ground state. 

e A = 100, g = 0.1, ground state. 
A = g = 1, ground state (see the comment in § 3.3). 

* A = g = 100, ground state. 

A slight modification of this result confirms the applicability of the standard 
truncation method to equation (4). 

Corollary 1. The finite secular equation 

det Q ( N )  = 0, N<O3, 

gives the approximate roots E = E"'(N) which converge towards the exact physical 
energies E"' in the limit N + 03. 

Proof. From l/fiT"+:" = 0 it follows that l / f ~ N + z ) f ~ ? ~ z )  # 0 (cf the proof of theorem). 
Hence, the algebraic identity 

( 2 2 )  det Q ( N )  = l / f ~ N ' z ) f ~ N + " ,  . , fp,"'" 
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implies that the roots E”’(N)  of the finite determinant det Q ( N )  coincide with the 
roots of the finite approximants l/fhN+2’ to equation (20 )  and vice versa. 

We may introduce here also the so-called effective interactions. 

Corollary 2. The finite secular equation 

det QIM’(N) = 0, N<cO, MGCO 

with the ‘effective Hamiltonian’ matrix 

Q‘’’(N)l, = Q(N), ,  -6,NS,~b$fF;i~’~’, 

gives the energies E”’(N + M )  which become exact in the limit M -+ CO. 

i , j = O ,  1 , .  . . , N ,  

Proof. In accord with ( 2 2 )  and ( l o ) ,  the replacement of the matrix element aN -+ a r ’  = 
1 lf rVNIM +2i in ( 2 1 )  is equivalent to the replacement of the cut-off N + N + M  since 
the initialisation f?i+f’ = 0 of our auxiliary sequence fi;“’”‘“’ may be given an 

( Y + M + 2 )  equivalent form 1 / f ~ Y + ” ‘ ” ’  = a r ’  = 1/ fN 

For practical purposes, we may employ either the M + C O  limit or the various 
approximate forms of (24). 

Corollary 3. The finite secular equation ( 2 3 )  with N >> 1 may be replaced by 

with an arbitrary real constant c not lying in the 0 ( 1 / N )  vicinity of c ( N )  = 2(N/g)”’. 
It improves the precision of equation ( 2 1 )  provided that c = O(1). With the pair of 
constants c = c1  E (0, c ( N ) )  and c = c2 & (0 ,  c ( N ) ) ,  we obtain the pairs of energy roots 
which approach the exact E“”s from both sides in the limit N -+ 00. 

Proof. With respect to the accumulation property (17a), the first part of our assertion 
follows from (23 )  with some M >> 1 and with bNf!$;lML2i in (24) replaced by an estimate 
(19). The second statement was inspired by the results of table 1 and follows from 
the smooth character of the E dependence of fk’s near E“’. It becomes obvious after 
an inspection of figure 1 or 2. 

5. Conclusions 

We would like to underline the following four aspects of the present formalism. 
(1) In analogy with the results obtained recently for certain polynomial potentials 

by Singh eta1 (1978,1979), our ‘Green function’fb” is a sum of its various perturbation 
expansions and exhibits their analytic properties in an explicit way. For certain 
exceptional energy and couplings specified by Whitehead et a1 (1982), it may also 
degenerate to the elementary (rational) function. 

(2)  The bound states are exactly defined by means of the closed formula (6). Up 
to the degenerate terminating solutions, they have a form of a convergent infinite-series 
expansion in the basis In ) .  
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(3) From the numerical point of view, formula (14) with ff) =fk" gives an 
alternative and numerically stable prescription how to evaluate the determinantal 
bound-state projections ( n  I+) and the norm of + simultaneously with the generation 
of the inverse 'Green function' l/fd"' near or at its zero. It is important to keep in 
mind that the modified initialisations (cf algorithms A2 and A3) enable us to construct 
the lower and upper bounds for both the energy E"' and norm Il+\l. 

(4) In a broader context, our example and construction exhibit a close structural 
connection between the exact (continued-fractional) 'effective Hamiltonian' Q'" (N)  
and the exact (continued-fractional) 'inverse Green function' l/fb"' = Q'"'(0) (cf also 
Znojil 1980). 
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Note added. An interesting paper by C S Lai and H E Lin (1982 J. Phys. A: Math. 
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